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ON THE RELATIVE EQUILIBRIA OF A SATELLITE-GYROSTAT, 
THEIR BRANCHINGS AND STABILITY* 

V.N. RUBANOVSKII 

The set of relative equilibria of a satellite-gyrostat in a Newtonian 

gravitational fieldis studied. The simple geometrical form of this set 

is described. The branching and stability of the equilibria of a sym- 

metric gyrostat are considered. The results are represented by bifur- 

cation diagrams, on which the degree of stability of the equilibria is 
distributed in accordance with a law whereby the stability changes at a 

fixed value of the gyrostatic moment. 

1. In some problems of gyrostat dynamics in a Newtonian gravitational field /l-6/, the 

determination of the positions of relative equilibrium of the gyrostat amounts to finding the 

stationary values of the function 

W = ?& 9 (3hAly,’ - A#? - 2kjpj) 
‘jz 

under the conditions 
nv = y12 + yz2 + ys2 - 1 = 0, np = p," + pl' T B38 - 1 = 0 (1.1) 

nvfi = Ylel + ylBz + y&J3 - 0 
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Here, A,< A,,<A, are the principal central moments of inertia of the gyrostat, kj 
are the projections onto the principal axes xi of the central ellipsoid of inertia of the 

vector k, which is proportional to the vector of the gyrostatic moment g. 

In particular, for problems of the relative equilibrium of a satellite-gyrostat in a 

Kepler circular orbit /l-4/ h= 1, k=go-1, o is the orbital angular velocity, and vj and 

Bj are the projections onto the zj axes of the unit vectors along the radius vector and the 

binormal of the orbit. 
The equations of relative equilibrium can be written as /4-6/ 

BW, 'By, = 3h [(A, - CT) y1 + J&l = 0 (1 2 3) 

aw*,;ap, = 3hhy, + (Y - A,) p1 - k, = 0 (1 2 3) 

2W, = 2W + Ghks~,~ + vq - 3&c, 

(1.2) 

where h, o and v are the undetermined Lagrange multipliers. 

We fix h,c,v, and solve Eqs. (1.2) for y,, pi: 

y+\k,@,-‘, p,l = (0 - A,) k@,-’ (1 2 3) (1.3) 
aI = 3hh2 + (o - A,) (v - A,) (1 2 3) 

Substituting the values (1.3) into (l.l), we obtain a system of three linear equations 

for k,“, k,2, k,“, from which, under the condition 

hA # 0. A = (A, - A,) (A3 - A,) (A, - A,) 

we obtain 

k,2= ('13 - .4P) L1%2 
ii=A 

, L,=h2+(G-A112)(ls-AA,) (123) (1.4) 

Using (1.4), we can write (1.3) as /6/ 

Fig.1 

- - y 1 2 (A, - 4 LI B 1 2 (Aa 4 = = (0 4’ LI 
A 

, 
h=A 

(1 2 3) (1.5) 

For the geometrical representation of the set of all 

relative equilibria (1.3) and (1.4), we consider in the space 

of parameters 1.o.v the domain /6/ D, defined by the 

inequalities L,> O,L,<O,L,>O. To points of D there 

corresponds real values of yj, pi, k,. The domain D is a 

cylindrical solid, whose profile (Fig.1) is formed by the 

three circles L, = 0 (j = 1, 2,3), which are similar to the 

Moire circles familiar in the theory of elasticity. It 

follows from (1.5) that the orientation of the gyrostat body 

in relative equilibrium is independent of the parameter Y. 

To each point of the profile of D there correspond eight 

positions of equilibrium, for which yj, 61 (j = 1, 2, 3) correspond to eight different combi- 

nations of signs of the k,. To points which are symmetrical about the plane I?. = 0 there 
correspond dynamically equivalent equilibrium positions which differ by a 180° rotation about 

the vector p. To the generators h -= 0.0 = Aj(j = 1,2,3) of the boundary aD of domain D, 

along which we have mutual contact of each two of the three cylinders Lj = 0 (j = 1, 2, 3), 
there correspond the families of equilibria /3, 4/ 

yI = 1, pz = y3 = fir = 0, pz = sin 0, p3 = cos 0 (1 2 3) 

k,=O,k,=(v-AJsinO,k,=(v-AA,)cose(0<e<2n) 
(1.6) 

In the equilibrium positions (1.6), the z1 axis is parallel to the vector 8,and 5% and 

XJ axes are perpendicular to the vector y, while the x3 axis is at an angle 8 to the 
vector fI, and the rotor axis is orthogonal to the vectors y and $. 

To points of the cylinders L, = 0 (j = 1,2,3) there correspond the families of equilibria 

/3, 4/ 

V, = p1 = 0, ya = p3 = cos v2e1,y3 = -& = -sin li,e, (I 23) 

k, = Iv - A, - 3h (A, - A,) cos2 l/,e,l sin l!,e, (0 < 8, < 2n) 

k, = Iv - A, + 3h (A3 - A& sin2 1:2811 cos 1!2f31, k, = 0 

(1.7) 

For the solution (1.7), the x1 axis is collinear with the vector a = fi x y, directed 
along the tangent to the orbit towards the motion of the gyrostat centre of mass, the x1 and 

53 axes are perpendicular to the vector a, while the z3 axis makes an angle l/+3, to the 
vector p, and the rotor axis is orthogonal to the vector a. As 
L, = 0 (L, = 0) 

A, + AI.(A, 4 AJ, the cylinder 
stretches out continuously into the straight line h = 0, u = A, (h = 0, u = A,), 



and the domain D degenerates into the surface of the cylinder L, = 0, while the families (1.6), 
(1.7) exhaust all the relative equilibria of the gyrostat. 

2. Sufficient conditions for stability of the relative equilibria (1.3), (1.4) are ob- 

tained in /4/. These conditions can be written in terms of the parameters h, o, Y, as 

a > 0, A’ = 2av + b > 0, 1 = a,.* + hv + c ‘2 0 
a :I h-“H, b _ 3hffI’ - zoh-‘H - pv-4Jf2 

IZ = ((J - A,) (a - A,) (u - A,), H’ = dH do 

c = 9 ,Vh’H” + 3h [(3h - 1) H - OH’] $ (19 - 3hH’) h-“H 

oh-iIJ’ 

_I z h-‘If (v - @ + (3hH’ - h-PH2) (V - c) 'i- 3h P.‘,hh”H” 

(31~ - 1) H - PH’HI 

We take the two surfaces in the space of parameters a, U,V, 

1‘ = 2.k (h. e), Vf = (b L I/bz)4ac):(2a) 

(2.1) 

defined by the equation A = 0. The functions Y = v* take real values for all admissible 
values h f: 0, u. The surface v = v+ cuts the cylinders Lj = 0 along the curves Gj, whose 
projections onto the plane h = 0 are the hyperbolas 

v = A, c 3h (0 - A,) (IS - A& (D - A,)-’ (1 2 3) 

At the same time, the curve Gj is the line of intersection of the cylinder Lj = 0 and 
the cone @'i = 0. The surface v = Y- cuts the cylinders Lj = 0 along the ellipses Ej, which 
are located in parallel planes and project onto the plane h=O as the segments of parallel 
straight lines 

Y = (1 -; 6h)a - 3h(A, + As) (1 2 3) 

The surface v = v+ has a discontinuity at IS= A,. As c-A,, it tends asymptotically 
to the plane 0 = A,. With O< A,, the surfaces v = Vf intersect only under the condition 

3h> (A3 - AB)(A2 -A,)-‘, the their lines of intersection are then located betweenthe cylinders 

I,, = O,L,= 0, while their ends are on the cylinder L, = 0. With cr>_4,, the surface VY vf 
always intersect; their line of intersection is then between the cylinders L, = 0, L, >= 0, 
while its ends lie on the cylinder L, = 0. 

Conditions (2.1) are equivalent to 

a> 0, v > vp, v1 = min (v+,v-), vg = mal (v',v-) (2.2) 

We see from (2.2) that the equilibria for which V> v,,v~ <V <v~, v <VI, have a degree 

of instability X, which is respectively equal to 0, 1, 2, if a> 0, and to 1, 2, 3, if cl<O. 

3. Let us study the relative equilibria of the symmetric gyrostat under the conditions 

-4, = A,<A,, (el" 4 e,2)e,fO (3.1) 

where eJ are the projections onto the Xi axes of the unit vector in the direction ofthevector 

k, k,=kej (j= 1,2,3), where k is a variable parameter. 

Under conditions (3.1), Eqs.cl.2) and (1.1) have two one-parameter families of solutions: 

v1 =- hke,Q[r, PI = ke, (a - A,) @)1-l (1 2 3) (3.2) 

Q,, = Q,, = (0 - A,) [v - A, - 3h (a - A,)l,h2 = (‘J - 

A,) (A, - 4 

cb3 = (U -As) IV - A, - 3h (a - A,)1, el’ i ea3 == Pz2X3 

e3”(A,-AA,)(cr-AA)~31i2,(1~1’L,e32(AS-Al)(.43- 

n’) k2 = @,a 

The equilibrium positions (3.2) and (3.3) can be represented geometrically in the space 

of parameters l;,o,v, by points of the curve I?, whose branches rI and ra are given by the 

last two equations in (3.2) and (3.3). 
Let us study the branches rI and r,, corresponding to the equilibria (3.2) and (3.3). We 

start with the curve rl. 
Dividing the last two equations in (3.2) term by term, and introducing the auxiliary 

parameter v, we obtain 



v-‘4Al---h(o-‘4$) = 
V - A,-3h (u-.41) 1'9 p=x 

1/ 
!L!!z..% (-x,<P<x) 
o-.41 

From (3.4) and (3.2), we have 
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(3.4) 

(3.5) 

We now add the last two equations in (3.2) term by term, and using (3.4), we obtain 

(A,-~A,)h.~=I(u-~A1)~2.+A3-ulIY-~A-33h(o-~Al)la 

On substituting for v and u from (3.5), we now finally obtain 

In short, in the space of parameters k, (J, v r the branch rr of curve r is a spatial 
curve whose parametric form is given by (3.5) and (3.6). 

In Fig.2 we plot the function given by Eq.(3.6), and in Fig.3 (the continuous curve) the 
projection of the curve rr onto the (J = 0 plane. Here, 

Hence we conclude that, for the values 0 <k$<k*’ and k2 > ka2 , there are respect- 
ively four and two positions of relative equilibrium of the gyrostat, which are given by (3.2). 

For equilibria (3.2), the stability conditions (2.1) take the form 

a = (A;2--+A;; %” > 0, A’ = a(l +3h)(.4*---'13)[(1 +p)xlL 2p”] 
(1 - Y) w + x3) >o (X.7) 

A = ‘l,x3e,a (A, - AJ (1 - p) dk2,‘dy > 0 

Now take the branch rz, corresponding to equilibria (3.3). In the space of parameters 
k,o,v, it is a plane curve which lies in the plane I_?= A, and is defined by the last of Eqs. 

(3.3). 

In Fig.3 (the broken curve) we show the projection of the curve Tz onto the plane u = 0. 
Here, 

V * - 2.* = 3h (A, - A,) (1 - x)-‘(I + x)-’ 

Hence we see that, for the values O<k’<k*’ and k2 > k *‘, there are respectively four 
and two positions of relative equilibrium, given by (3.3). 

he 

h*' 

AA 

1 2 3 1 

p” 0 1 u 

Fig.2 Fig.3 

The sufficient conditions for stability of the relative equilibria (3.3) are given by 

(2.1), where we now have /4/ 

a = (A, - A,) cts2, b = (A, - A,) us2 [(A, + A,) (1 - 

Bs’) + 2A1fL2j 

c = (A3 - A,) A,cc~~ [A,p,2 + A, (1 - figa) 
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Using these realtions and (3.3), we can write conditions (2.1) as 

(3.8) 

A = 1iz%3t:'e,2 (A, - A,) (v - AZ) dkaidv > 0 

4. Let us study the stability of equilibria (3.2) and (3.3). Let % be the degree of 
instability (RI). The equilibria for which x = 0 are stable, while when x = ,l or x :: 3, 
they are unstable. No answer is given by Routh's theorem when x = 2. If this equilibrium is 
stable, its stability is of a gyroscopic type, and by the Kelvin-Chetayev theorem /7/, it is 
temporary and is destroyed 
dissipation. 

From (3.7), (3.6) and 

under the action of a system of dissipative forces with total 

Fig.2, we see that, for the equilibria (3.2), a <n and 

h' < 0, h < 0, x ==: 1, if IL< p* or p > 1 

h’>O, .1.>0, x=:2, if p*<p<O 
A'> 0, ,1< 0, x - 3, if 0 < II-< 1 

For the equilibria (3.3), we see from (3.8),thelast relation in (3.3), and Fig.3 (broken 
curve), that a>U and 

A’<O, A>O, X--z 2, if V<A, 

A’<o, A<O, x -; 1, if A,<v<v, 
2’>O,S>O,~-0, if T*c(v<n3 or v>As 

The results of analysing the stability conditions for equilibria (3.2) and (3.3) are 
shown in Figs.2 and 3, where the numbers 0, 1, 2, 3 on the branches of the curve I' indicate 
the DI of the respective equilibria. Notice that, in Fig.?, the DI distribution on the 
branches of the curve is subject to the law whereby the stability changes /7/ at a fixed 
value of the parameter k; in particular, the DI only changes at points of bifurcation. 

Similar bifurcation diagrams can be plotted for equilibria (3.2) and (3.3) in the case 
when A, = A,> A,. 
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